
US NDC Modernization
SAND200X-XXXX
Unlimited Release
December 2014

US NDC Modernization: Service Oriented
Architecture Study Status

Version 1.1

Benjamin R. Hamlet, Andre V. Encarnacao, James M. Harris, and Christopher J. Young

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2014-20565R

2

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

3

SAND200X-XXXX
Unlimited Release

December 2014

US NDC Modernization: Service Oriented
Architecture Study Status

Benjamin R. Hamlet, Andre V. Encarnacao, James M. Harris, and Christopher J. Young
Next Generation Monitoring Systems

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0401

Abstract

This report is a progress update on the USNDC Modernization Service Oriented
Architecture (SOA) study describing results from Inception Iteration 1, which
occurred between October 2012 and March 2013. The goals during this phase are 1)
discovering components of the system that have potential service implementations, 2)
identifying applicable SOA patterns for data access, service interfaces, and service
orchestration/choreography, and 3) understanding performance tradeoffs for various
SOA patterns

4

REVISIONS

Version Date Author/Team Revision Description Authorized by

1.0 3/31/2013 US	NDC	Modernization	Team Initial	Release M.	Harris

1.1 12/19/2014 IDC	Reengineering	Team IDC	Release M.	Harris

5

CONTENTS

1. Introduction..7

2. Preliminary Service Identification ...7

3. SOA Pipeline Patterns ...9
3.1 Pattern Summary ...9
3.2 Information Flow...10
3.3 Data Access Methods ..11
3.4 SOA Interface Standards ...12

4. Performance Testing ...13
4.1 Message Formats...13
4.2 Service Interfaces: Message Content..14
4.3 Sample Pipeline...15
4.4 Results and Discussion ..16

5. Future Work..17

6. References...18

APPENDIX A: Service Selection Results..19

APPENDIX B: Messaging Performance Results ...23

APPENDIX C: Sample Pipeline Performance Results...30

FIGURES

Figure 1. Centralized controller component ...10
Figure 2. Distributed control logic (no centralized controller component)..................................11
Figure 3. Data is accessed directly through a COI..12
Figure 4. Data is accessed through a Data Access Service ...12
Figure 5. Sample pipeline..16

TABLES

Table 1. Service Selection 19
Table 2. Messaging performance 24
Table 3. Performance results 30

6

NOMENCLATURE

DOE Department of Energy
ESB Enterprise Service Bus
IDC International Data Center
SNL Sandia National Laboratories
SOA Service Oriented Architecture
US NDC United States National Data Center
XML Extensible Markup Language

7

1. INTRODUCTION

This report describes progress for the Service Oriented Architecture (SOA) study completed
during US NDC Modernization Inception Iteration 1 (October 2012 – March 2013). Goals
during this phase are:

1. Discover components of the System that have potential service implementations
2. Identify applicable SOA patterns for data access, service interfaces, and service

orchestration/choreography
3. Understand performance tradeoffs for various SOA patterns

The first item is covered by a service identification exercise based on ranking system
components using qualities typically found in services. The second item is designed to provide
comparison points between the current system architecture and potential future architectures.
The third item provides metrics for these comparisons and is based on understanding
performance implications of accessing services using eight different potential architectures.

2. PRELIMINARY SERVICE IDENTIFICATION

The first step of the SOA study involves service selection. The goal of this exercise is to identify
service selection criteria, understand service selection techniques, and discover which aspects of
the system have potential to be implemented as services. This is only a preliminary service
identification used to help understand system scope. Final service selection will occur at a later
date if SOA is used in the modernized system architecture.

All candidate services must have at least the following qualities:
 Reusability: a service must be useful in more than one context or to more than one user.
 Composability: a service must be a useful component of a larger business need rather

than serving an isolated purpose

Any component that is not reusable or which serves an isolated purpose on its own should either
be a standalone application, a subcomponent of a service, or accessed through a library.
Candidate services are rated according to the following four qualities:

1. Granularity – measures the ratio of how much computation is performed in a single call
to a service to its invocation overhead.

Assignments: coarse, medium, fine

Discussion: A fine-grained procedure has a low ratio, does not perform much
computation in a single call, and is potentially limited in performance by high
communication overhead. A coarse-grained procedure has a high ratio, performs
relatively large amounts of computation in a single call, and has performance less
coupled to communication overhead.

8

2. Autonomy – specifies the likeliness of a potential service’s results being used or meeting
a defined need on their own versus use as an intermediate step in a larger process.

Assignments: low, medium, high

Discussion: A basic signal processing function has low autonomy if it is always used as
an intermediate step to help solve higher order problems in areas such as detection,
location, or association. Detection, location, and association algorithms themselves likely
have high autonomy.

3. Modularity – identifies ability to describe a component with a well-defined interface,
allowing for the consistent use of multiple different implementations.

Assignments: low, medium, high

Discussion: Standardized interfaces are necessary components of re-implementable
services.

4. Volume – indicates how often a component is used during system operations.

Assignments: low, medium, high

Discussion: Volume count assignments do not automatically preclude a component’s use
as a service. Since high volume can result in high aggregate communication costs, it can
be a driving factor in implementing a component as a library rather than as a service. In
general, volume assignments are based on relative invocation counts compared to other
components in the system. A medium volume assignment is given to an operation that is
called routinely, perhaps for every piece of data processed by the system. Low and high
volume operations are called significantly less or more often.

Selecting which components are ultimately implemented as services is a tradeoff of the
granularity, autonomy, modularity, and invocation volume of the component. A component
performing a specific, fine-grained task might be a good service candidate if it has high
independence, whereas a coarse-grained task that has low independence or modularity might be
better implemented as a subcomponent.

Components isolated from automatic pipeline or interactive processing operations tend to be
identified as poor candidates for services as they are unlikely to meet either the reusability or
composability criteria.

Several system components have been identified as not meeting the service selection criteria and
have been eliminated from further consideration as services:

1. Analyst tools are not services but graphical applications that access services.
2. Unclassified to classified data transfer requires a highly specialized, secure

implementation.

9

3. System recovery is a rarely initiated process independent of standard mission
processing and operations. It may access services.

Please see Appendix A: Service Selection for system component ranking and identification as
services, libraries, or applications.

3. SOA PIPELINE PATTERNS

Several key architectural decision points for using a SOA on the modernized system concern
information flow through the processing pipeline structure, database access, and typical service
interfaces. Two alternatives in each of these areas are discussed in this section, and performance
for each of the alternatives is discussed in the following section.

Automatic pipeline processing uses separate processing components which each take a particular
set of inputs, perform processing on those inputs to create outputs, and then pass those outputs to
the next processing component for further refinement. Two possibilities for passing data
between processing components in a SOA are direct communication between services, where
one service communicates results to the next service, and central controller based
communication where a central controller acts as a hub handling all messaging. In the latter
option, the central controller receives outputs from services and then passes them to the next
service in the pipeline. This option supports a flexible pipeline by allowing the central controller
to make decisions about which services to call, but this flexibility comes at the cost of increased
messaging loads.

The current generation of software tends to have each system component directly access data
from the backing database. This can be efficient, but involves several important tradeoffs:
system components are aware of the physical data model, preventing components and the data
model from varying independently of one another, and data access logic is distributed throughout
the codebase, leading to potential code duplication and requiring individual developers to be
familiar with making database queries. Migrating software to use a Common Object Interface
(COI) could mitigate some of these problems by providing a central access point for database
interactions. Two possible patterns are to allow services direct access to a COI or to use a data
access service.

Database centric communication is typical of many components in the current system. If one
component needs to send data to another component, the first component writes that data to the
database, alerts the second component that data is available, and the second component reads that
information from the database. Using this type of communication in a SOA results in light
service interfaces as most of the information used by a service is passed through the database and
not through the service interface. An alternative approach is to implement services using rich
interfaces that pass data directly through interface parameters rather than the database.

3.1 Pattern Summary

10

The SOA patterns considered in this study are summarized below, organized by pattern decision
points. Each decision point offers two alternatives, yielding a total of eight combinations.
Performance for each of these combinations is analyzed in the Performance Testing section.

1. Understand relationship between data flow and control flow
a. Data marshaling and unmarshaling requirements for direct service-to-service or

client-service communication
b. Data marshaling and unmarshaling requirements using a centralized controller to

broker communication (service-controller-service or client-controller-service
communication)

2. Understand relative costs associated with potential data access architectures
a. Data accessed directly from COI
b. Data accessed using COI service

3. Understand relative costs associated with potential SOA interface designs
a. Parameters passed directly to service
b. Parameters passed through data store; interface parameters describe database

queries

Each of these decision points is discussed in more detail below.

3.2 Information Flow

Two general types of information flows exist in the system: Control flow and Data flow. Control
flow refers to how service invocation messages are passed and data flow refers to how service
inputs and outputs are passed. Combining services to solve problems involves passing control
and data between services. Two primary methods of passing information are:

1. Centralized control logic: a central controller component brokers communication
between services. All services receive input from the controller and pass results back to
the controller. Services are completely decoupled from one another.

Figure 1. Centralized controller component

2. Distributed control logic: service pass messages directly to other services without using a
central controller component.

11

Figure 2. Distributed control logic (no centralized controller component)

Of concern to SOA performance is the amount of marshaling and unmarshaling required to pass
data between services. Consider control flowing from Service A to Service B. There are several
options for how Service A’s outputs are mapped to Service B’s inputs:

1. Forward: Service A’s outputs are passed directly to Service B
2. Subset: Some of Service A’s outputs are passed to Service B
3. Append: All or some of Service A’s outputs plus additional data are passed to Service B
4. No dependence: Service A does not produce any inputs required for Service B

A trade study of ESB and messaging implementations is required to understand how data
marshaling occurs in these cases both when services are invoked on the ESB as higher -order
services and when they are invoked in client code as applications. Only the first option is studied
in the performance tests.

3.3 Data Access Methods

Two design possibilities combining a SOA with a COI were investigated in this performance
study:

1. Data access via a COI, i.e. abstracted from data storage -- Services perform data storage
and retrieval using a COI. The COI handles all interactions with the backing data store.
Abstracted data access allows the data store to vary independently of data access.

12

Figure 3. Data is accessed directly through a COI
2. Data access via a service – This design extends abstracted data access by requiring

services to store and retrieve data through a data access service. This decouples services
from data access, allowing the data access service to vary independently of the processing
services.

Figure 4. Data is accessed through a Data Access Service

3.4 SOA Interface Standards

We investigated two primary options for service interface design in the system:
1. Light interfaces follow the current system design, where information is passed primarily

through the database. In this option, simple messages are sent between services declaring
where in the database the invoked service may find its input parameters. Service
interfaces are decoupled from one another by passing parameters through the backing
data store, but services rely on a contract external to the interfaces defining what
parameters are expected in the data store.

13

2. Rich interfaces provide more service separation from the surrounding environment by
defining all input parameters as part of the interface, freeing services from having to
negotiate a common parameter area in the data store. Services can optionally access the
data store for additional configuration parameters that are either invariant from one
invocation to the next or are implementation specific parameters hidden from clients.

4. PERFORMANCE TESTING

Messaging performance testing provides data points for use in making decisions regarding
service selection and SOA architectural patterns. In particular, messaging costs associated with
services are required to understand service granularity and invocation volume, as discussed in the
Preliminary Service Identification section, and are a comparison point for tradeoffs involved in
using the various architectural patterns discussed in the SOA Pipeline Patterns section.

Canonical SOA performance testing tasks have been selected to establish the performance costs
associated with using a Service Oriented Architecture as the basis of an explosion monitoring
system similar to those operated by the USNDC and IDC. Mock services implementing a variety
of interfaces with similar types, amounts, and sizes of parameters to potential services are used.
The mock services do not perform actual computations, allowing performance tests to study the
overhead associated with various architectures.

Messaging costs for data flow through a sample processing pipeline are also computed, allowing
for higher order performance comparisons.

SOA architectures often employ an Enterprise Service Bus (ESB) as a central component
involved in message queuing, routing, translation, service registration, and service orchestration.
As a central hub brokering client-service and service-service communication, ESB performance
is a factor in overall system performance. ESB performance is not considered in this report.
Existing ESB performance test results are available [1] and are a potential topic for future study.

4.1 Message Formats

The message content and formatting we used follow openly available schema and encoding
mechanisms. The selected schemas are currently supported by the seismological community and
message encoding products are supported by common enterprise computing products.

Two message formats were used:
1. Human readable messages with data in CSS 3.0 XML format
2. Binary versions of CSS 3.0 XML format messages using the Fast Infoset [2] format

Both message formats carry the same information and all messages conform to the same
schemas. The same tests were run using each format to study relative performance. Fast Infoset
was used as the binary XML format because it is a stable product of the Glassfish community. It
operates with JAXB, allowing significant reuse of parsing and writing code with that used for the
human readable messages.

14

4.2 Service Interfaces: Message Content

Mock services use three classes of information:
1. Alphanumerics

 Event data: long, double, and string values as stored in the origin, assoc, and arrival

tables.

READ: Event data is generated from the database by querying a specified time
period
WRITE: Event data is written to the database

 Arrival data: long, double, and string values as stored in the arrival table.

READ: Arrival data is generated from the database by querying a specified time
period
WRITE: Arrival data is written to the database

 Origin data: long, double, and string values as stored in the origin table.

READ: Origin data is generated from the database by querying a specified time
period
WRITE: Origin data is written to the database

 Site data: long, double, and string values as stored in the site table
READ: Site data is generated from the database for a specific geographic area
WRITE: Site data is written to the database

 Bulletin data: long, double, and string values as stored in the origin and origerr tables
READ: Bulletin data is generated from the database by querying a specified time
period
WRITE: Bulletin data is written to the database

 String data: Java string object
READ: String data is randomly generated from uppercase characters in the
English alphabet
WRITE: String data is not written

2. Waveforms

 Arrays of 8-byte doubles with long, double, and string metadata from the wfdisc table
READ: Waveform data is generated by querying wfdisc rows from the database
for a specified station, channel, and time period and then using the wfdisc to
retrieve the required *.w waveform files from disk.
WRITE: Waveform data is written as a *.w waveform to disk

3. Imagery

 java.awt.Image objects. Images are marshaled and un-marshaled in a base64
encoding.

READ: Image data is read from GIF and PNG images stored on disk
WRITE: Image data is not written

These basic data types are building blocks for mock services designed to input and output
various combinations and quantities of data representing operations performed in automatic and

15

interactive monitoring software. Rather than measuring performance of all anticipated system
messages, the study covers messaging performance for canonical families of messages.
Performance for specific operations can then be estimated using the cost of a similarly sized
message using a similar balance of data types. The tables below show some possible mappings
of message types to operations performed on the system. These tables are not exhaustive, but
were used to verify performance metrics were gathered for a range of messages spanning system
usage.

1. Perform query
Request Response Examples
Small Small Lookup station information, lookup phase identification, lookup

event location
Small Medium-

large
Get map of specified region, get specified channel waveform, get
event bulletin

2. Perform monitoring operation
Request Response Examples
Medium-
large

Small Locate event (various number of associated arrivals), identify
event

Medium-
large

Medium-
large

Associate signal detections, identify phases, compare bulletins,
compute batch of earth model prediction, locate group of events

3. Perform operation
Request Response Examples
Small None/

Confirmation
Log message, pipeline control/invoke services

Small Small Time/date functions, geometric calculations, geographic
calculations, magnitude and other derived alphanumeric
calculations

4. Perform waveform operations
Request Response Examples
Large Small Waveform quality, signal detection, feature extraction
Large Medium Waveform based event processing (outputs a bulletin)
Large Large Filter waveform, beam forming, convolution, deconvolution,

correlation, compute PSD, compute spectrogram, compute fk

4.3 Sample Pipeline

Assembling services into a sample monitoring pipeline consolidates individual messaging costs
and allows higher order comparisons of various message formats, data access methods, pipeline
control, and types of service interfaces. Our sample pipeline consists of four stages:

1. Data acquisition: individually receive 1 minute intervals of waveform data from a
network of 50 one channel stations

2. Signal Processing: immediately signal process waveforms to produce arrivals

16

3. Event Processing: collects 45 minutes of arrivals then run network processing to form
events

4. Write Bulletin: immediately store events and associated detections to a database

Figure 5. Sample pipeline

Arrival and origin counts are based on queries of the IDCX database , which records all of the
automatic signal detections made by the system before analyst review. Our analysis of the IDCX
database indicates an average of about 1,000 automatic arrivals and 61 automatically built events
in 45 minutes.

Performance for eight versions of this sample pipeline are considered in order to account for all
combinations of information flow (central controller or no central controller), data access (direct
data access or data access through a data service), and service interface standards (light or rich
interfaces) discussed above.

Since pipeline performance is based on individual messaging performance, extending results for
different pipeline structures or types of messages is straightforward. For instance, an obvious
advantage of using light interfaces is that intermediate processing results are immediately stored
to the database.
This can also be achieved using rich interfaces by writing processing results to the database
independent of normal pipeline control and dataflow, introducing additional syst em load.
Quantifying this load only requires adding the database writing costs into the output cost of each
processing stage.

4.4 Results and Discussion

Message overhead results for individual messages are tabulated in Appendix B: Messaging
Performance Results and performance results for the sample pipeline are in Appendix C: Sample
Pipeline Performance Results. This is a rich set of information that we hope will serve as a
useful reference for design of various types of service-based systems.

17

We identified the following as the most important observations:
 Database centric waveform operations dominate overall costs.
 As the light interface standard passes waveforms through the database, the light interface

based pipelines are an order of magnitude slower than the rich interface based pipelines.
 Data persistence is a side effect of using database centric communication. Persisting

intermediate results is a requirement of the next generation system but is not considered by
the rich interface pipeline. Whether or not the system separates persistence from control
flow, persistence costs for the rich interface based pipeline are easily obtained by adding the
costs of PUT operations from corresponding pipeline stages using light interfaces.

 Using a central controller component with rich interfaces results in roughly twice the
messaging overhead compared to direct service-to-service communication since information
must be packaged at one service, sent to the controller, unpackaged, analyzed, then repacked
and sent to the receiver. In direct service-to-service communication the redundant
marshaling and unmarshaling at the central controller is eliminated. It is possible that
messages could be constructed such that the central controller does not need to unmarshal
and remarshal the entire message, so costs reported here represent the worst case.

 Using a central controller component with light interfaces does not have any impact for this
pipeline as the cost associated with a string of 10,000 characters or less is negligible.

 Using a data access service with rich interfaces results in < 1% performance penalty for this
pipeline since data flows directly into services.

 Using a data access service with light interfaces results in 14.9% performance penalty for this
pipeline since service communication occurs through the database.

While it is premature to make architectural decisions based on this study, the performance results
indicate service oriented architectures and data access services are feasible on this system. There
are alternatives to consider for each type of architecture, such as handling persistence in rich
interfaces prior to writing final results or handling waveforms separate from alphanumeric data
when using light interfaces to avoid expensive file system operations. Additionally, a careful
study of implications to meeting system requirements is needed before deciding on a final
architecture.

5. FUTURE WORK

The first phase of the US NDC Modernization SOA Study focused on 1) using a service
selection exercise to understand if the system has components that can be beneficially
implemented as services 2) identifying key SOA architectural tradeoffs, 3) gathering
performance metrics for a variety of messages typical of system operations, and 4) formulating a
simple processing pipeline implemented using the different architectural patterns previously
identified and combining individual messaging costs to study performance tradeoffs of the
patterns. Further work on the SOA Study will focus on implementing a proof of concept SOA
system performing seismic signal and event processing. This will allow us to compare projected
performance for various system designs from this study with actual results.

18

6. REFERENCES

1. ESB Performance. AdroitLogic Private Ltd., 2012 (http://esbperformance.org).

2. Fast Infoset. Java.net, 2012 (http://fi.java.net/).

http://fi.java.net/

19

APPENDIX A: SERVICE SELECTION RESULTS

Table 1. Service Selection
C:Coarse F:Fine H:High L:Low M:Medium -:any valid option
Service column: A:Application L:Library S:Service. The primary option appears first when multiple options are suggested.

Potential Service Gra
nula
rity

Aut
ono
my

Mod
ularit
y

Vol
um
e

Ser
vice

Notes and Questions

Data Acquisition
 USAEDS

waveforms
 Standard external

network
waveforms (IDC
and other)

 Non-standard
external network
waveforms

 Bulletins
 Event Messages
 Non-waveform

misc. external
resources

C
C

C

M
F
-

H
H

H

H
H
H

H
H

M

M
M
L

M
M

L

L
L
L

A
A

A

S
A
A

Data access
 Waveforms
 Alphanumeric

-
-

L
L

M
M

M
H

S/L
S/L

- Modularity rating assumes a
Common Object Interface and is
medium due to the difficulty in
defining a fully abstracted
interface.

- Primary concern is data access
speed.

System logging F H H H L/S - Handles receiving and storing log
messages.

- Log type is general and includes
at least software processes,
hardware, data acquisition,
security, and pipeline health.

Analyst work assignment
creation

F H H L A Communication overhead is
immaterial for infrequently run
processes.

Analyst work assignment
distribution

F H H L A Communication overhead is
immaterial for infrequently run
processes.

Monitoring Network SOH M H H L S Includes acquisition SOH
Hardware SOH M H H L S Disk, memory, processor, network

loads and outages.
Process monitoring M H H L S

20

C:Coarse F:Fine H:High L:Low M:Medium -:any valid option
Service column: A:Application L:Library S:Service. The primary option appears first when multiple options are suggested.

Pipeline controller C H H M S Includes automatically launching
system components and services to
run the automatic pipeline.

Event location C H H H S Covers all technologies used for
location.

Signal association C H H M S
Event QC M M H M S Might be called by an association

algorithm to measure quality of
proposed events.

Event identification
 Individual

discriminants
 Full event

identification

F

C

H

H

H

H

M

M

S/L

S

Report generation
 Internal reports
 External reports

M
M

H
H

L
M

N
N

These are not services because they
are not Composable.

Publishing
 Reports
 Bulletins

M
M

H
H

H
H

L
L

S
S

Bulletin comparison C H H L S
Performance monitoring

 Network capability
 Station capability
 Event comparisons

(detecting stations,
picks, residuals,
location, etc.)

 Station ambient
noise

 Capability
estimation

M-C
M-C

M-C

C

C

H
H

H

H

H

H
H

H

H

H

L
L

L

L

L

S
S

S

S

S

- Monitors observed system
performance

- Covers comparisons between
current and historical capability,
analyst and automatic
performance, and analyst to
analyst performance.

- Capability estimation covers
simulated/predicted system
performance and refers to
NetSim/NetCAP/NetMOD

- Simulated/predicted results can be
compared to historical results

GIS: produce maps M H H L S Does not include the analyst map
Data forwarding - H H M S - Covers forwarding between the

OPS, ALT, SUS, and Training
subsystems as well as to external
sources like the IDC or national
labs.

- Transfer confirmation is included
in the service.

21

C:Coarse F:Fine H:High L:Low M:Medium -:any valid option
Service column: A:Application L:Library S:Service. The primary option appears first when multiple options are suggested.

Data backup C H H M A - Could portions be implemented as
a type of data forwarding?

Geometric operations
 Point-polygon

intersection
 Ellipse-polygon

intersection
 Ellipse-ellipse

intersection

F L H L L/S

Geographic operations
 Distance
 Azimuth
 Azimuthal gap
 Great circles

F L H M L/S

Date/time functions F L H M L/S
Waveform operations

 Individual
waveform quality
metrics

 Arrival time
 Amplitude
 Period
 Filtering
 Beam forming
 Rotation
 Polarization

features
 Convolution and

deconvolution
 SNR
 PSD
 Spectrograms
 Background noise

statistics
 fk
 Slowness
 Back-azimuth
 FFT
 Waveform

correlation
 etc.

F L H M L/S Compute one operation per
invocation.

22

C:Coarse F:Fine H:High L:Low M:Medium -:any valid option
Service column: A:Application L:Library S:Service. The primary option appears first when multiple options are suggested.

Waveform quality
 Gaps
 Repeated

amplitudes
 Amplitude Spikes
 …

F L H M S All metrics at once

Alphanumeric operations
 Network

magnitude
 Station magnitude
 Yield

F L H M L/S Compute one operation per
invocation.

Phase identification (also
used by assoc.)

F M H M S

Earth models :
 General EM, one

op. per call
 General EM, many

ops. per call
 1D
 2D
 2.5D
 3D

M

F

F
F
M
M

M

M

M
M
M
M

H

H

H
H
H
H

H

H

H
H
H
H

S/L

S

L/S
L/S
S
S

Operations include:
- Correction surfaces
- Travel time
- Azimuth
- Slowness
- Attenuation
- Blockage
- Uncertainties

Classic signal detection
 Arrival time
 Phase

identification
 SNR
 Amplitude
 Period
 Magnitude
 Yield

M M H M S All calculations occur during a single
invocation.

Waveform correlation
based signal analysis

C H H M S Assume a full system acting as a
detector, associator, locator, and
identifier.

Analyst collaboration
tools

 Analyst to analyst
messaging

 Message
broadcasting

 Data object
brokerage (e.g.,
trading arrivals)

F-M H M L S

23

APPENDIX B: MESSAGING PERFORMANCE RESULTS

Test Bed
Performance tests were repeated on three machines:
Workstation –Windows 7 workstation with Sandy bridge Xeon E5-1620 processor
Linux server – RHEL 6 server with Nehalem Xeon xx5570 processors
Solaris server– Solaris SunOS 5.10 server with SPARC processor (contains database)
Waveform NAS: NetApp FAS3240, 256GB cache, 1Gb network connection (connected to
separate switch than the processing machines)

Test Configuration
Each test is run using a pattern designed to isolate tests from one another:
testData = gatherTestData()
for i : 1 to numIterations
 if(i == startTimingIteration)
 Start timer
 runTest(testData)
stop timer
record results
clean up and garbage collect

The test data array is initialized prior to running any tests. Several iterations are run before the
timer starts to allow JVM runtime compilers to optimize code used by the test without affecting
the timing measurements.
Average processing time per message is computed from total processing time spent on each test.

Results
The table below details messaging costs for a selection of datatypes and sizes of potential system
messages. The tests were run on the three machines (Windows 7 workstation, a Linux server,
and a Solaris server previously described.

Database account information:
The following data from IDC database accounts was used for messaging performance tests.
- idcleb: reading origin, origerr, assoc, and arrival tables
- idcstatic: reading site table
- separate user account: writing origin, origerr , assoc, arrival, and site tables
- idcidcx.wfdisc_snl: reading the wfdisc table and obtaining waveform references
- Starting time reference for SQL queries = 1136073600 epoch seconds (Sun, 01 Jan 2006
00:00:00 GMT)

Legend:
Read: read data. Includes database and disk access as appropriate
Write: write data. Include writing to database and disk as appropriate
M(XML): Marshal human readable XML message
M(bin): Marshal binary XML message
U(XML): Unmarshal human readable XML message
U(binary): Unmarshal binary XML message

24

XML Size: size of human readable XML message
W: test time for the Windows workstation
L: test time for the Linux server
S: test time for the Solaris server

Table 2. Messaging performance

Test # Data type Details Amount of
data

XML
Size
(byte)

W
(ms)

L
(ms)

S
(ms)

1 Events select * from origin
o, arrival ar, assoc a
where ar.arid =
a.arid and a.orid =
o.orid and o.time >
1138225233 and
o.time <
1138225234

1 origin with 10
arrivals/assocs

Read N/A 96 49 206

Write N/A 250 228 215

M(XML) 9660 14 17 29

U(XML) 9660 19 22 35

M(bin) 3962 9 19 20

U(bin) 3962 11 15 18

2 Events select * from origin
o, arrival ar, assoc a
where ar.arid =
a.arid and a.orid =
o.orid and o.time >
1137593003 and
o.time <
1137593004

1 origin with
100 arrivals/
assocs

Read N/A 61 56 171

Write N/A 527 500 409

M(XML) 92661 18 25 49

U(XML) 92661 27 39 72

M(bin) 34185 16 24 51

U(bin) 34185 13 18 37

3 Events select * from origin
o, arrival ar, assoc a
where ar.arid =
a.arid and a.orid =
o.orid and o.time >
1136073600 and
o.time <
1136152800

61 origins with
1,017 arrivals/
assocs

Read N/A 216 217 323

Write N/A 3116 2726 2746

M(XML) 961093 150 210 447

U(XML) 961093 200 284 538

M(bin) 352167 171 222 517

U(bin) 352167 131 149 374

4 Events select * from origin
o, arrival ar, assoc a
where ar.arid =
a.arid and a.orid =
o.orid and o.time >
1136073600 and
o.time <
1136749500

558 origins with
10,018 arrivals/
assocs

Read N/A 2026 2056 2407

Write N/A 24921 23917 25962

M(XML) 9437446 1519 2020 4541

U(XML) 9437446 1957 2552 5047

M(bin) 3420950 1927 2382 5885

U(bin) 3420950 1283 1443 3604

5 Origins select * from origin
where time >
1136073600 and

10 origins Read N/A 28 19 52
Write N/A 76 77 76
M(XML) 4748 2 2 3

25

Test # Data type Details Amount of
data

XML
Size
(byte)

W
(ms)

L
(ms)

S
(ms)

time < 1136088000 U(XML) 4748 3 5 7
M(bin) 1952 1 1 4
U(bin) 1952 1 1 3

6 Origins select * from origin
where time >
1136073600 and
time < 1136203200

100 origins Read N/A 31 26 59
Write N/A 216 182 185
M(XML) 46713 8 10 24
U(XML) 46713 11 14 29
M(bin) 17489 9 11 28
U(bin) 17489 7 8 19

7 Origins select * from origin
where time >
1136073600 and
time < 1137443400

1,000 origins Read N/A 136 76 117
Write N/A 1470 1420 1460
M(XML) 466466 75 98 237
U(XML) 466466 103 130 268
M(bin) 173676 85 111 275
U(bin) 173676 64 74 189

8 Origins select * from origin
where time >
1136073600 and
time < 1146067200

10,000 origins Read N/A 1793 1507 1732
Write N/A 13086 12783 13721
M(XML) 4660676 771 1021 2461
U(XML) 4660676 1011 1312 2707
M(bin) 1727404 938 1205 3022
U(bin) 1727404 649 756 1918

9 Bulletin select * from origin
o, origerr oe where
o.orid = oe.orid and
o.time >
1136073600 and
o.time <
1136088000

10 origins/
origerrs

Read N/A 33 35 89

Write N/A 169 147 151

M(XML) 8865 3 3 5

U(XML) 8865 3 4 7

M(bin) 4078 2 3 7

U(bin) 4078 2 2 5

10 Bulletin select * from origin
o, origerr oe where
o.orid = oe.orid and
o.time >
1136073600 and
o.time <
1136203200

100 origins/
origerrs

Read N/A 270 46 101

Write N/A 451 431 346

M(XML) 88522 17 22 51

U(XML) 88522 22 28 59

M(bin) 40276 20 23 57

U(bin) 40276 13 15 37

11 Bulletin select * from origin
o, origerr oe where
o.orid = oe.orid and
o.time >
1136073600 and
o.time <
1137443400

1,000 origins/
origerrs

Read N/A 1450 1426 1474

Write N/A 2899 2748 2756

M(XML) 883845 159 204 476

U(XML) 883845 187 242 504

M(bin) 399282 182 233 561

U(bin) 399282 125 146 370

12 Bulletin select * from origin
o, origerr oe where
o.orid = oe.orid and
o.time >
1136073600 and

10,000 origins/
origerrs

Read N/A 3643 3442 3825

Write N/A 25179 24620 30216

M(XML) 8807786 1639 2129 4968

U(XML) 8807786 1887 2441 5027

26

Test # Data type Details Amount of
data

XML
Size
(byte)

W
(ms)

L
(ms)

S
(ms)

o.time <
1146067200

M(bin) 3933040 2312 2739 7264

U(bin) 3933040 1258 1478 3709

13 Sites select * from
idcstatic.site where
lat > 0 and lat < 10
and lon > 0 and lon
< 140

12 sites Read N/A 21 16 31
Write N/A 82 73 70
M(XML) 3104 0 1 3
U(XML) 3104 1 1 3
M(bin) 1088 1 1 3
U(bin) 1088 0 1 2

14 Sites select * from
idcstatic.site where
lat > 30 and lat < 60
and lon > 30 and
lon < 60

108 sites Read N/A 31 21 35
Write N/A 152 147 144
M(XML) 28767 4 6 13
U(XML) 28767 7 9 19
M(bin) 10816 5 5 14
U(bin) 10816 3 4 10

15 Sites select * from
idcstatic.site where
lat > -45 and lat <
90 and lon > 0 and
lon < 180

1,003 sites Read N/A 64 57 63
Write N/A 1008 972 910
M(XML) 264617 35 47 107
U(XML) 264617 48 63 133
M(bin) 90552 41 51 115
U(bin) 90552 30 35 87

16 Sites select * from
idcstatic.site

1,700 sites Read N/A 175 72 87
Write N/A 1669 1553 1526
M(XML) 449327 59 80 178
U(XML) 449327 82 106 220
M(bin) 153903 68 87 202
U(bin) 153903 52 59 147

17 Waveform From
idcidcx.wfdisc_snl
table -- station
“KK31”, channel
“be”, start time =
1136766609, end
time =
1136766668.975

2,400 samples
(1 minute @
40Hz)

Read N/A 1284 289 571

Write N/A 4 186 188

M(XML) 60767 11 14 30

U(XML) 60767 18 21 48

M(bin) 22874 12 14 31

U(bin) 22874 13 15 39

18 Waveform From
idcidcx.wfdisc_snl
table -- station
“KK31”, channel
“be”, start time =
1136766609, end
time =
1136768408.975

72,000 samples
(30 minutes @
40Hz)

Read N/A 1304 288 574

Write N/A 19 317 380

M(XML) 1828011 328 401 885

U(XML) 1828011 528 610 1436

M(bin) 325219 340 407 878

U(bin) 325219 380 430 1115

19 Waveform From
idcidcx.wfdisc_snl
table -- station

144,000
samples (60
minutes @

Read N/A 1202 290 583

Write N/A 34 395 302

27

Test # Data type Details Amount of
data

XML
Size
(byte)

W
(ms)

L
(ms)

S
(ms)

“KK31”, channel
“be”, start time =
1136766609, end
time =
1136770208.975

40Hz) M(XML) 3658203 669 804 1785

U(XML) 3658203 1061 1212 2850

M(bin) 628580 683 817 1734

U(bin) 628580 759 850 2239

20 Waveform From
idcidcx.wfdisc_snl
table -- station
“KK31”, channel
“be”, start time =
1136766609, end
time =
1136773808.975

288,000
samples (120
minutes @
40Hz)

Read N/A 1814 451 893

Write N/A 66 539 577

M(XML) 7314793 1328 1640 3558

U(XML) 7314793 2125 2424 5679

M(bin) 1235341 1366 1652 3476

U(bin) 1235341 1525 1726 4468

21 String N/A Length of 100 Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 193 0 0 0
U(XML) 193 0 1 1
M(bin) 127 0 0 0
U(bin) 127 0 0 0

22 String N/A Length of 1,000 Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 1093 0 0 0
U(XML) 1093 0 0 1
M(bin) 1030 0 0 1
U(bin) 1030 0 0 0

23 String N/A Length of
10,000

Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 10093 0 0 1
U(XML) 10093 0 1 1
M(bin) 10030 0 0 1
U(bin) 10030 0 0 1

24 String N/A Length of
100,000

Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 100093 3 5 16
U(XML) 100093 2 3 12
M(bin) 100030 2 3 10
U(bin) 100030 3 4 11

25 Image Satellite image from
Google maps

400x600 GIF Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 253713 206 230 1171
U(XML) 253713 80 74 979
M(bin) 253650 206 262 1189
U(bin) 253650 76 80 1029

26 Image Satellite image from
Google maps

400x600 PNG Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 1003049 679 807 2611
U(XML) 1003049 250 301 1533

28

Test # Data type Details Amount of
data

XML
Size
(byte)

W
(ms)

L
(ms)

S
(ms)

M(bin) 1002986 705 889 2468
U(bin) 1002986 252 277 1517

27 Image Satellite image from
Google maps

1200x1800 GIF Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 2051161 1908 2279 4956
U(XML) 2051161 522 544 2009
M(bin) 2051098 1974 2387 5214
U(bin) 2051098 531 613 2032

28 Image Satellite image from
Google maps

1200x1800
PNG

Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 8726565 5954 7154 15457
U(XML) 8726565 2188 2464 6724
M(bin) 8726502 6066 7386 16397
U(bin) 8726502 2103 2403 5953

29 Image Non-color map
image from Pyxis

400x600 GIF Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 169589 220 251 737
U(XML) 169589 56 52 427
M(bin) 169526 231 300 743
U(bin) 169526 56 56 412

30 Image Non-color map
image from Pyxis

400x600 PNG Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 89885 538 661 1437
U(XML) 89885 63 71 303
M(bin) 89822 541 660 1499
U(bin) 89822 63 71 320

31 Image Non-color map
image from Pyxis

1200x1800 GIF Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 1374653 1849 2185 4647
U(XML) 1374653 375 406 1306
M(bin) 1374590 1885 2274 4654
U(bin) 1374590 379 417 1290

32 Image Non-color map
image from Pyxis

1200x1800
PNG

Read N/A N/A N/A N/A
Write N/A N/A N/A N/A
M(XML) 485493 3429 4566 9499
U(XML) 485493 414 560 1320
M(bin) 485430 3434 4632 9506
U(bin) 485430 416 638 1324

33 Arrival select * from arrival
a where a.time >
1136073600 and
a.time <
1136074950

10 arrivals Read N/A 31 28 113
Write N/A 102 87 87
M(XML) 5197 13 15 26
U(XML) 5197 19 21 35
M(bin) 1925 23 12 18
U(bin) 1925 14 9 14

34 Arrival select * from arrival
a where a.time >
1136073600 and
a.time <
1136087000

100 arrivals Read N/A 33 30 102
Write N/A 224 191 196
M(XML) 52072 11 13 41
U(XML) 52072 19 25 46
M(bin) 19205 11 12 28

29

Test # Data type Details Amount of
data

XML
Size
(byte)

W
(ms)

L
(ms)

S
(ms)

U(bin) 19205 8 11 21

35 Arrival select * from arrival
a where a.time >
1136073600 and
a.time <
1136153300

1,000 arrivals Read N/A 91 84 139
Write N/A 1563 1460 1505
M(XML) 520206 83 104 240
U(XML) 520206 107 151 276
M(bin) 187584 94 117 280
U(bin) 187584 66 93 193

36 Arrival select * from arrival
a where a.time >
1136073600 and
a.time <
1136747562

10,000 arrivals Read N/A 613 619 872
Write N/A 13658 13406 14274
M(XML) 5190930 873 1121 2600
U(XML) 5190930 1059 1455 2755
M(bin) 1851943 1038 1346 3045
U(bin) 1851943 674 940 1926

30

APPENDIX C: SAMPLE PIPELINE PERFORMANCE RESULTS

Pipeline performance metrics computed using the Linux server and human readable XML
messages. Control message marshaling and unmarshaling costs are negligible compared to costs
of data messages and are ignored (costs in the messaging performance table are at most 1ms for
messages up to 10,000 characters).

Legend:
PUT: Store to database, including disk access for writing waveforms.
GET: Read from database, including disk access for reading waveforms.
M: Marshal message
U: Unmarshal message
arrivalWF: arrival data for 1 minute of waveform data across the network
arrivalAll: arrival data for 45 minutes of waveform data across the network
WF: 1 minute of waveform data at a single station
Event: network event data for 45 minutes

Costs for single operations (numbers outside parenthesis) and total cost during the 45 minute
pipeline processing time period (numbers inside parenthesis) are reported in the cost column.

Table 3. Performance results

Acquire
data

Cost Signal
processing

Cost Event
processing

Cost Write
bulletin

Cost Subt
otal
s
(ms)

Totals
(s)

SERVICE-TO-SERVICE COMMUNICATION

Light
(direct
data
access)
input

0 GET(WF) 289
(6502
50)

GET(arrivalAll
)

84 N/A: side
effect of
previous
step

0 6503
34

1075.4
75

output PUT(WF) 186
(418
500)

PUT(arrivalWF) 87
(3915)

PUT(event) 2726 0 4251
41

Light(data
service)
input

0 GET(WF) +
M(WF) +
U(WF)

324
(7290
00)

GET(arrivalAll
) +
M(arrivalAll)
+ U(arrivalAll)

339 N/A: side
effect of
previous
step

0 7293
39

1235.3
44

output M(WF) +
U(WF) +
PUT(WF)

221
(497
250)

M(arrivalWF) +
U(arrivalWF) +
PUT(arrivalWF)

123
(5535)

M(event) +
U(event) +
PUT(event)

3220 0 5060
05

Rich
(direct
data
access)
input

0 U(WF) 21
(4725
0)

U(arrivalAll) 151 U(event) 284 4768
5

82.796
output M(WF) 14

(315
00)

M(arrivalWF) 15
(675)

M(event) 210 PUT(event) 2726 3511
1

31

Acquire
data

Cost Signal
processing

Cost Event
processing

Cost Write
bulletin

Cost Subt
otal
s
(ms)

Totals
(s)

Rich (data
service)
input

0 U(WF) 21
(4725
0)

U(arrivalAll) 151 U(event) 284 4768
5

83.29
output M(WF) 14

(315
00)

M(arrivalWF) 15
(675)

M(event) 210 M(event) +
U(event) +
PUT(event)

3220 3560
5

CENTRL CONTROLLER COMPONENT

Light
(direct
data
access)
input

same as
above

0 same as above 289
(6502
50)

same as
above

84 same as
above

0 6503
34

1075.4
75

output same as
above

186
(418
500)

same as above 87
(3915)

same as
above

2726 same as
above

0 4251
41

Light(data
service)
input

same as
above

0 same as above 324
(7290
00)

same as
above

339 same as
above

0 7293
39

1235.3
44output same as

above
221
(497
250)

same as above 123
(5535)

same as
above

3220 same as
above

0 5060
05

Rich
(direct
data
access)
controller

U(WF) +
M(WF)

35
(7875
0)

U(arrivalAll) +
M(arrivalAll)

255 U(event) +
M(event)

494 7949
9

162.29
5

input 0 U(WF) 21
(4725
0)

U(arrivalAll) 151 U(event) 284 4768
5

output M(WF) 14
(315
00)

M(arrivalWF) 15
(675)

M(event) 210 PUT(event) 2726 3511
1

Rich (data
service)
controller

U(WF) +
M(WF)

35
(7875
0)

U(arrivalAll) +
M(arrivalAll)

255 U(event) +
M(event)

494 7949
9

162.78
9

input 0 U(WF) 21
(4725
0)

U(arrivalAll) 151 U(event) 284 4768
5

output M(WF) 14
(315
00)

M(arrivalWF) 15
(675)

M(event) 210 M(event) +
U(event) +
PUT(event)

3220 3560
5

